Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[bis[(1,10-phenanthroline)cobalt(II)]- μ_4 -3,6-dicarboxycyclohexane-1,2,4,5-tetracarboxylato]

Wei Xu

Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China Correspondence e-mail: xuwei@nbu.edu.cn

Received 24 May 2011; accepted 26 May 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.083; data-to-parameter ratio = 15.1.

In the title compound, $[Co_2(C_{12}H_8O_{12})(C_{12}H_8N_2)_2]_n$, each 3,6dicarboxycyclohexane-1,2,4,5-tetracarboxylate $(H_2 chhc^{4-})$ anion has crystallographically imposed C_2 symmetry and bridges four six-coordinate Co atoms, generating polymeric chains running along [010]. These chains are further extended into a three-dimensional network via O-H···O hydrogenbonding interactions and interchain π - π stacking interactions [centroid–centroid distance = 3.662(2) Å].

Related literature

For the design and synthesis of coordination polymer complexes and their potential applications, see: Biradha et al. (2006); Bauer et al. (2007); Zacher et al. (2011). For the 1,2,3,4,5,6-cyclohexanehexacarboxylate ligand, see: Li et al. (2006); Wang et al. (2008); Thuéry & Masci (2010). For related structures, see: Konar et al. (2004); Li et al. (2006).

Experimental

Crystal data

 $[Co_2(C_{12}H_8O_{12})(C_{12}H_8N_2)_2]$ $M_r = 822.46$ Monoclinic, C2/c a = 22.180 (4) Å b = 8.9520 (18) Å c = 16.426 (3) Å $\beta = 93.33(3)^{\circ}$

Data collection

Siemens P4 diffractometer Absorption correction: ψ scan (XSCANS: Siemens, 1996) $T_{\min} = 0.702, \ T_{\max} = 0.784$ 4566 measured reflections 3753 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.083$	independent and constrained
S = 1.03	refinement
3753 reflections	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
248 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

 $V = 3256.0 (11) \text{ Å}^3$

Mo Ka radiation

 $0.31 \times 0.23 \times 0.15 \text{ mm}$

3312 reflections with $I > 2\sigma(I)$

3 standard reflections every 97

intensity decay: none

 $\mu = 1.10 \text{ mm}^-$

T = 295 K

 $R_{\rm int} = 0.022$

reflections

Z = 4

Table 1 Selected bond lengths (Å).

Co1-O1	2.2002 (13)	Co1-O6 ⁱ	2.1519 (13)
Co1-O2	2.0890 (13)	Co1-N1	2.1012 (15)
Co1-O5 ⁱ	2.1211 (13)	Co1-N2	2.1016 (15)

Symmetry code: (i) x, y - 1, z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O4-H4A\cdots O2^{ii}$	0.79 (3)	1.89 (3)	2.627 (2)	156 (2)
Symmetry code: (ii) -	-x - v + 2 - z			

netry code: (ii)

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This project was supported by the Scientific Research Fund of the Zhejiang Provincial Education Department (grant No. Y201017782) and the Scientific Research Fund of Ningbo University (grant No. XKL09078). Grateful thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5153).

References

- Bauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136-7144.
- Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179. Konar, S., Zangrando, E., Drew, M. G. B., Ribas, J. & Chaudhuri, N. R. (2004).
- Dalton Trans. pp. 260-266.
- Li, Z.-F., Xie, H.-Z. & Zheng, Y.-Q. (2006). Acta Cryst. C62, m455-m457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thuéry, P. & Masci, B. (2010). *Cryst. Growth Des.* **10**, 3626–3631. Wang, J., Lin, Z. J., Ou, Y. C., Shen, Y., Herchel, R. & Tong, M. L. (2008). Chem. Eur. J. 14, 7218-7235.
- Zacher, D., Schmid, R., Wöll, C. & Fischer, R. A. (2011). Angew. Chem. Int. Ed. 50, 176-199.

Acta Cryst. (2011). E67, m832-m833 [doi:10.1107/S1600536811019970]

catena-Poly[bis[(1,10-phenanthroline)cobalt(II)]-µ₄-3,6-dicarboxycyclohexane-1,2,4,5-tetra-carboxylato]

W. Xu

Comment

The rational design and construction of metal-organic coordination polymers with flexible multidentate ligands have received more and more attention due to their intriguing structural topologies and novel properties for potential applications (Biradha, *et al.*, 2006; Bauer, *et al.*, 2007; Zacher, *et al.*, 2011). As a typical flexible cycloalkane polycarboxylic acid ligand, we have focused on the 1,2,3,4,5,6-cyclohexanehexacarboxylic acid (H₆chhc) whose coordination chemistry remains practically unexplored. We were particularly aware that the greater flexibility of this ligand would make the prediction and control of the final coordination networks that it generates more difficult. (Wang, *et al.*, 2008; Thuéry & Masci, 2010). Herein, we report a new cobalt coordination polymer, $[Co_2(phen)_2(H_2chhc)]_n$, resulting from reaction of Co^{2+} cations, phen and H₆chhc under hydrothermal conditions. It is isostructural with the previously reported $[Ni_2(phen)_2(H_2chhc)]_n$ complex (Li, *et al.*, 2006).

The asymmetric unit of the title compound consists of one Co^{2^+} cation, one phen ligand and one-half of a H₂chhc⁴⁻ anion lying across a twofold rotation axis. The Co atoms are each in an octahedral environment defined by two N atoms of one phen ligand and four O atoms of two carboxylate groups from different H₂chhc⁴⁻ anions. The Co-O bond lengths fall in the range 2.089 (1)-2.200 (1) Å and the two Co-N distances are 2.101 (2) and 2.102 (2) Å (Table 1), thus falling in the expected region (Konar, *et al.*, 2004). The octahedral coordination around the Co atoms are strongly distorted since the diametrical and non-diametrical bond angles indicate significant deviations from 180° and 90°, respectively. The H₂chhc⁴⁻ ligands assume an *e,e,e,e,e*-conformation with the central ring adopting a chair-shaped configuration, the carboxylate and carboxyl groups being located at the equatorical sites. Each carboxylate group of the H₂chhc⁴⁻ anion chelates one Co atom. As a result, the H₂chhc⁴⁻ anions are each coordinated to four [Co(phen)]²⁺ units, leading to polymeric chains [Co₂(phen)₂(H₂chhc)]_n running along the [010] direction with the phen ligands *exo*-orientated (Fig. 1). The phen ligands of two adjacent supramolecular chains are stacked *via* the quinoline fragments (centroid-centroid distance = 3.662 (2) Å). Obviously, such π - π stacking interactions are responsible for the supramolecular assembly of the one-dimensional chains into two-dimensional layers parallel to (001) (Fig. 2). The layers are further connected to form a three-dimensional framework *via* interlayer O-H…O hydrogen bonds (d(O4…O2^{#1} = 2.627 (2) Å, <O4-H4A…O2^{#1} = 156 (2)°, #1 = -x, 2-y, -z).

Experimental

 $CoCl_2.6H_2O$ (0.238 g, 1.0 mmol), H_6chhc (0.173 g, 0.5 mmol), phen (0.200 g, 1.0 mmol) and NaOH 1.5 mL (1 M) were stirred in 20 mL H_2O . The resulting mixture was placed in a 23 mL Teflon-lined autoclave and heated at 170 °C for 3 days. The reaction system was cooled to room temperature at a rate of 20 °C/h, and small amount of pink crystals of the title complex was obtained.

Refinement

All H atoms bound to C were position geometrically and refined as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms attached to O were located in difference Fourier maps and refined freely with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. ORTEP view of the polymer chain $[Co_2(phen)_2(H_2chhc)]_n$ of the title complex. The displacement ellipsoids are drawn at 40% probability level, hydrogen atoms are omitted for clarity.

Fig. 2. A view of a single layer of the title complex.

catena-Poly[bis[(1,10-phenanthroline)cobalt(II)]- μ_4 -3,6- dicarboxycyclohexane-1,2,4,5-tetracarboxylato]

Crystal data	
$[Co_2(C_{12}H_8O_{12})(C_{12}H_8N_2)_2]$	F(000) = 1672
$M_r = 822.46$	$D_{\rm x} = 1.678 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 25 reflections
a = 22.180 (4) Å	$\theta = 5.0 - 12.5^{\circ}$
b = 8.9520 (18) Å	$\mu = 1.10 \text{ mm}^{-1}$
c = 16.426 (3) Å	T = 295 K
$\beta = 93.33 \ (3)^{\circ}$	Block, pink
$V = 3256.0 (11) \text{ Å}^3$	$0.31\times0.23\times0.15~mm$
Z = 4	

Data collection

Siemens P4 diffractometer	3312 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.022$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
$\theta/2\theta$ scans	$h = -28 \rightarrow 1$
Absorption correction: ψ scan (<i>XSCANS</i> ; Siemens, 1996)	$k = -1 \rightarrow 11$
$T_{\min} = 0.702, \ T_{\max} = 0.784$	$l = -21 \rightarrow 21$
4566 measured reflections	3 standard reflections every 97 reflections

3753 independent reflections	intensity decay: none		
Refinement			
Refinement on F^2	Secondary atom site location: difference Fourier map		
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites		
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of independent and constrained refinement		
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0413P)^2 + 2.2781P]$ where $P = (F_o^2 + 2F_c^2)/3$		
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$		
3753 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$		
248 parameters	$\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$		
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}		
Primary atom site location: structure-invariant direct			

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00077 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.098444 (9)	0.64743 (2)	0.140367 (13)	0.02138 (9)
01	0.07208 (6)	0.79951 (15)	0.23735 (7)	0.0330 (3)
O2	0.04781 (7)	0.83776 (14)	0.10892 (7)	0.0327 (3)
O3	0.08305 (7)	1.16900 (18)	0.04746 (9)	0.0433 (4)
O4	-0.01738 (6)	1.14637 (17)	0.04776 (8)	0.0363 (3)
H4A	-0.0159 (12)	1.148 (3)	-0.0004 (19)	0.054*
O5	0.09100 (5)	1.45307 (15)	0.21296 (8)	0.0314 (3)
O6	0.01745 (5)	1.51543 (15)	0.12579 (8)	0.0329 (3)
N1	0.13438 (6)	0.55177 (17)	0.03690 (9)	0.0277 (3)
N2	0.18993 (7)	0.70526 (19)	0.16045 (9)	0.0322 (3)
C1	0.10617 (9)	0.4793 (2)	-0.02411 (11)	0.0378 (4)
H1A	0.0642	0.4771	-0.0272	0.045*
C2	0.13708 (13)	0.4053 (3)	-0.08457 (14)	0.0544 (6)
H2A	0.1159	0.3563	-0.1272	0.065*

C3	0.19861 (13)	0.4065 (3)	-0.07970 (15)	0.0591 (7)
H3A	0.2196	0.3561	-0.1186	0.071*
C4	0.23052 (10)	0.4833 (3)	-0.01624 (14)	0.0472 (5)
C5	0.29531 (12)	0.4955 (4)	-0.00706 (19)	0.0673 (8)
H5A	0.3186	0.4468	-0.0441	0.081*
C6	0.32300 (10)	0.5748 (4)	0.05321 (19)	0.0686 (9)
H6A	0.3649	0.5806	0.0569	0.082*
C7	0.28897 (9)	0.6512 (3)	0.11216 (16)	0.0517 (6)
C8	0.31442 (11)	0.7393 (4)	0.17623 (18)	0.0660 (8)
H8A	0.3561	0.7516	0.1821	0.079*
C9	0.27855 (12)	0.8067 (4)	0.22961 (17)	0.0658 (8)
H9A	0.2954	0.8650	0.2719	0.079*
C10	0.21599 (11)	0.7875 (3)	0.22011 (14)	0.0487 (5)
H10A	0.1917	0.8338	0.2568	0.058*
C11	0.22540 (8)	0.6391 (2)	0.10648 (12)	0.0339 (4)
C12	0.19595 (8)	0.5557 (2)	0.04106 (11)	0.0318 (4)
C13	0.00497 (7)	1.00717 (17)	0.20407 (9)	0.0213 (3)
H13A	-0.0344	0.9985	0.1741	0.026*
C14	0.03623 (7)	1.15052 (16)	0.17600 (9)	0.0205 (3)
H14A	0.0778	1.1519	0.1998	0.025*
C15	0.00349 (7)	1.29201 (17)	0.20377 (9)	0.0194 (3)
H15A	-0.0367	1.2958	0.1758	0.023*
C16	0.04335 (8)	0.87293 (17)	0.18323 (10)	0.0234 (3)
C17	0.03790 (8)	1.15477 (18)	0.08330 (10)	0.0256 (3)
C18	0.03920 (7)	1.42928 (17)	0.17948 (9)	0.0209 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.02179 (13)	0.01718 (13)	0.02545 (13)	-0.00066 (8)	0.00385 (8)	-0.00008 (8)
01	0.0451 (7)	0.0284 (6)	0.0258 (6)	0.0125 (6)	0.0031 (5)	0.0002 (5)
02	0.0497 (8)	0.0259 (6)	0.0228 (6)	0.0115 (6)	0.0048 (5)	-0.0013 (5)
O3	0.0426 (8)	0.0505 (9)	0.0389 (7)	0.0011 (7)	0.0212 (6)	0.0015 (6)
O4	0.0402 (7)	0.0477 (9)	0.0209 (6)	0.0031 (6)	0.0014 (5)	-0.0005 (6)
05	0.0286 (6)	0.0283 (6)	0.0368 (6)	-0.0066 (5)	-0.0040 (5)	0.0084 (5)
O6	0.0274 (6)	0.0276 (6)	0.0431 (7)	-0.0037 (5)	-0.0031 (5)	0.0141 (6)
N1	0.0265 (7)	0.0298 (7)	0.0272 (7)	0.0006 (6)	0.0044 (5)	-0.0008 (6)
N2	0.0299 (7)	0.0335 (8)	0.0328 (7)	-0.0094 (6)	-0.0004 (6)	0.0029 (7)
C1	0.0407 (10)	0.0412 (11)	0.0313 (9)	-0.0015 (8)	0.0005 (7)	-0.0037 (8)
C2	0.0764 (17)	0.0522 (14)	0.0353 (11)	-0.0025 (13)	0.0089 (10)	-0.0145 (10)
C3	0.0742 (17)	0.0589 (15)	0.0469 (13)	0.0132 (14)	0.0256 (12)	-0.0108 (12)
C4	0.0444 (11)	0.0513 (13)	0.0479 (12)	0.0140 (10)	0.0206 (9)	0.0045 (10)
C5	0.0411 (13)	0.086 (2)	0.0782 (18)	0.0230 (14)	0.0307 (13)	0.0099 (17)
C6	0.0245 (10)	0.096 (2)	0.087 (2)	0.0121 (13)	0.0166 (11)	0.0225 (18)
C7	0.0236 (9)	0.0692 (17)	0.0620 (14)	-0.0055 (9)	0.0005 (9)	0.0216 (12)
C8	0.0310 (11)	0.092 (2)	0.0729 (17)	-0.0238 (13)	-0.0132 (11)	0.0211 (16)
C9	0.0571 (15)	0.081 (2)	0.0564 (15)	-0.0368 (15)	-0.0180 (12)	0.0040 (14)
C10	0.0505 (13)	0.0511 (13)	0.0438 (11)	-0.0208 (11)	-0.0043 (9)	-0.0023 (10)

C11	0.0229 (8)	0.0386 (10)	0.0404 (10)	-0.0019 (7)	0.0025 (7)	0.0106 (8)
C12	0.0278 (8)	0.0337 (9)	0.0348 (9)	0.0038 (7)	0.0091 (7)	0.0062 (8)
C13	0.0275 (7)	0.0155 (7)	0.0213 (7)	-0.0008 (6)	0.0037 (6)	-0.0001 (6)
C14	0.0228 (7)	0.0161 (7)	0.0227 (7)	-0.0001 (6)	0.0036 (5)	0.0001 (6)
C15	0.0209 (7)	0.0157 (7)	0.0217 (7)	0.0000 (5)	0.0020 (5)	0.0003 (6)
C16	0.0302 (8)	0.0168 (7)	0.0238 (7)	-0.0003 (6)	0.0051 (6)	0.0008 (6)
C17	0.0342 (8)	0.0179 (7)	0.0252 (8)	0.0015 (6)	0.0077 (6)	0.0009 (6)
C18	0.0238 (7)	0.0167 (7)	0.0228 (7)	0.0008 (6)	0.0058 (6)	-0.0014 (6)
Geometric p	arameters (Å, °)					
Co1-01		2.2002 (13)	С3—	H3A	0.9	300
Co1		2.0890 (13)	C4—	C12	1.4	06 (3)
Co1-05 ⁱ		2.1211 (13)	C4—	C5	1.4	40 (3)
$C_{01} = 06^{i}$		2 1519 (13)	C5—	C6	13	38 (5)
Co1—N1		2 1012 (15)	C5—	H5A	0.9	300
Co1-N2		2.1012(15) 2.1016(15)	C6—	C7	1.4	35 (4)
$C_01 - C_18^i$		2.4599 (16)	C6—	H6A	0.9	300
Col - Cl6		2 4827 (16)	C7—	C8	1.4	07 (4)
01—C16		1.250 (2)	C7—	C11	1.4	12 (3)
O2—C16		1.270 (2)	C8—	C9	1.3	59 (4)
O3—C17		1.198 (2)	C8—	H8A	0.9	300
O4—C17		1.329 (2)	С9—	C10	1.3	98 (3)
O4—H4A		0.79 (3)	С9—	H9A	0.9	300
O5—C18		1.263 (2)	C10–	-H10A	0.9	300
O5—Co1 ⁱⁱ		2.1211 (13)	C11–	C12	1.4	35 (3)
O6—C18		1.247 (2)	C13–	C16	1.5	23 (2)
O6—Co1 ⁱⁱ		2.1519 (13)	C13–	-C13 ⁱⁱⁱ	1.5	38 (3)
N1-C1		1.321 (2)	C13-	C14	1.5	42 (2)
N1-C12		1.364 (2)	C13–	-H13A	0.9	800
N2-C10		1.330 (3)	C14-	C17	1.5	26 (2)
N2-C11		1.355 (3)	C14-	C15	1.5	42 (2)
C1—C2		1.405 (3)	C14-	-H14A	0.9	800
C1—H1A		0.9300	C15-	C18	1.5	28 (2)
C2—C3		1.363 (4)	C15–	–C15 ⁱⁱⁱ	1.5	35 (3)
C2—H2A		0.9300	C15-	-H15A	0.9	800
C3—C4		1.405 (4)	C18–	-Co1 ⁱⁱ	2.4	599 (16)
O2—Co1—N	11	110.87 (6)	С5—	C6—C7	12	1.0 (2)
02—Co1—N	12	109.77 (6)	С5—	С6—Н6А	119	9.5
N1—Co1—N	12	79.58 (6)	C7—	С6—Н6А	119	9.5
O2—Co1—C	05 ⁱ	138.57 (6)	C8—	C7—C11	110	5.6 (2)
N1—Co1—C	05 ⁱ	99.55 (6)	C8—	С7—С6	124	4.6 (2)
N2—Co1—C	05 ⁱ	102.70 (6)	C11–	-С7-С6	118	3.8 (2)
O2—Co1—C	D6 ⁱ	89.26 (5)	С9—	C8—C7	120).5 (2)
N1-Co1-C	D6 ⁱ	92.27 (6)	С9—	C8—H8A	119	9.8
N2—Co1—C	06 ⁱ	160.89 (6)	С7—	C8—H8A	119	9.8

O5 ⁱ —Co1—O6 ⁱ	61.34 (5)	C8—C9—C10	119.2 (2)
O2—Co1—O1	60.84 (5)	С8—С9—Н9А	120.4
N1—Co1—O1	165.26 (6)	С10—С9—Н9А	120.4
N2—Co1—O1	91.64 (6)	N2—C10—C9	122.4 (2)
O5 ⁱ —Co1—O1	93.89 (5)	N2	118.8
O6 ⁱ —Co1—O1	99.50 (6)	C9—C10—H10A	118.8
O2—Co1—C18 ⁱ	115.12 (6)	N2	122.6 (2)
N1—Co1—C18 ⁱ	96.96 (6)	N2-C11-C12	117.47 (15)
N2—Co1—C18 ⁱ	132.85 (6)	C7—C11—C12	119.9 (2)
O5 ⁱ —Co1—C18 ⁱ	30.88 (5)	N1—C12—C4	122.56 (19)
O6 ⁱ —Co1—C18 ⁱ	30.46 (5)	N1-C12-C11	117.50 (16)
O1—Co1—C18 ⁱ	97.68 (5)	C4—C12—C11	119.94 (18)
O2—Co1—C16	30.74 (5)	C16—C13—C13 ⁱⁱⁱ	109.53 (11)
N1—Co1—C16	140.98 (6)	C16—C13—C14	108.82 (12)
N2—Co1—C16	104.00 (6)	C13 ⁱⁱⁱ —C13—C14	112.70 (10)
O5 ⁱ —Co1—C16	116.86 (6)	C16—C13—H13A	108.6
O6 ⁱ —Co1—C16	93.24 (6)	C13 ⁱⁱⁱ —C13—H13A	108.6
O1—Co1—C16	30.20 (5)	C14—C13—H13A	108.6
C18 ⁱ —Co1—C16	106.99 (5)	C17—C14—C13	110.89 (13)
C16—O1—Co1	87.50 (10)	C17—C14—C15	108.29 (12)
C16—O2—Co1	92.02 (10)	C13—C14—C15	111.56 (12)
C17—O4—H4A	110 (2)	C17—C14—H14A	108.7
C18—O5—Co1 ⁱⁱ	89.55 (10)	C13—C14—H14A	108.7
C18—O6—Co1 ⁱⁱ	88.55 (10)	C15—C14—H14A	108.7
C1—N1—C12	118.65 (16)	C18—C15—C15 ⁱⁱⁱ	109.99 (10)
C1—N1—Co1	128.96 (13)	C18—C15—C14	108.86 (12)
C12—N1—Co1	112.02 (12)	C15 ⁱⁱⁱ —C15—C14	111.64 (10)
C10—N2—C11	118.66 (18)	C18—C15—H15A	108.8
C10—N2—Co1	128.76 (15)	C15 ⁱⁱⁱ —C15—H15A	108.8
C11—N2—Co1	112.44 (12)	C14—C15—H15A	108.8
N1—C1—C2	122.6 (2)	O1—C16—O2	119.22 (15)
N1—C1—H1A	118.7	O1—C16—C13	121.57 (14)
C2—C1—H1A	118.7	O2—C16—C13	119.17 (14)
C3—C2—C1	118.9 (2)	O1—C16—Co1	62.30 (9)
С3—С2—Н2А	120.6	O2-C16-Co1	57.23 (8)
C1—C2—H2A	120.6	C13-C16-Co1	174.86 (12)
C2—C3—C4	120.5 (2)	O3—C17—O4	124.52 (17)
С2—С3—НЗА	119.8	O3—C17—C14	124.24 (17)
С4—С3—НЗА	119.8	O4—C17—C14	111.20 (14)
C3—C4—C12	116.8 (2)	O6—C18—O5	120.56 (15)
C3—C4—C5	124.8 (2)	O6—C18—C15	119.79 (14)
C12—C4—C5	118.3 (2)	O5—C18—C15	119.64 (14)
C6—C5—C4	122.0 (2)	O6—C18—Co1 ⁱⁱ	60.99 (9)
С6—С5—Н5А	119.0	O5—C18—Co1 ⁱⁱ	59.57 (8)

С4—С5—Н5А	119.0	C15—C18—Co1 ⁱⁱ		178.92 (11)	
Symmetry codes: (i) $x, y-1, z$; (ii) $x, y+1, z$; (iii) $-x, y, -z+1/2$.					
Hydrogen-bond geometry (Å, °)					
D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
O4—H4A···O2 ^{iv}	0.79 (3)	1.89 (3)	2.627 (2)	156 (2)	
Symmetry codes: (iv) $-x$, $-y+2$, $-z$.					

Fig. 1

Fig. 2